Loading...

Let's take a closer look at the slope of our landing airplane.

Let's calculate the slope of our landing plane.

graph of plane descending

Let's look at our landing plane's ordered pairs in a t-chart.

x = Time (in minutes) y = Feet
1 1920
2 1280
3 640
4 0


Now let's calculate the rate of change, or slope. Remember that slope is calculated:
m = \(\mathsf{ \frac{\text{rise}}{\text{run}} }\)

Time Span Slope
(1, 1920) to (2, 1280)
\(\mathsf{ \frac{\text{rise}}{\text{run}} = \frac{1280-1920}{2-1} = \frac{-640\text{ft}}{1\text{min}} }\)
(2, 1280) to (3, 640)
\(\mathsf{ \frac{\text{rise}}{\text{run}} = \frac{640-1280}{2-3} = \frac{-640\text{ft}}{1\text{min}} }\)
(3, 640) to (4, 0)
\(\mathsf{ \frac{\text{rise}}{\text{run}} = \frac{0-640}{3-4} = \frac{-640\text{ft}}{1\text{min}} }\)


Notice that the slope is always \(\mathsf{ \frac{-640\text{ft}}{1\text{min}} }\).