Loading...

Now you try!

For the following problems, you will practice with slope. Each practice problem will require the following three steps.

First, you'll label x1,y1 and x2,y2 for the ordered pairs.
(x1, y1) (x2, y2)
(3,5) (7,9)
Then, you'll substitute the values into the formula, \(\mathsf{ m = \frac{y_2 - y_1}{x_2 - x_1} }\) \(\mathsf{ m = \frac{9 - 5}{7 - 3} }\)
Finally, subtract and simplify. \(\mathsf{ m = \frac{9 - 5}{7 - 3} = \frac{4}{4} = 1 }\)

Now calculate the slope using the two ordered pairs shown.


(9,3) (14,13)

x1, y1 x2, y2
(9,3) (14,13)
\(\mathsf{ m = \frac{13-3}{14-9} }\)
\(\mathsf{ m = \frac{10}{5} = 2 }\)

(-4,6) (16,66)

x1, y1 x2, y2
(-4,6) (16,66)
\(\mathsf{ m = \frac{66-6}{16-(-4)} }\)
\(\mathsf{ m = \frac{60}{20} = 3 }\)

(-5,-8) (2,13)

x1, y1 x2, y2
(-5,-8) (2,13)
\(\mathsf{ m = \frac{13-(-8)}{2-(-5)} }\)
\(\mathsf{ m = \frac{21}{7} = 3 }\)

(-2,8) (-4,8)

x1, y1 x2, y2
(-2,8) (-4,8)
\(\mathsf{ m = \frac{8-8}{-4-(-2)} }\)
\(\mathsf{ m = \frac{0}{-2} = 0 }\)

(18,18) (18,23)

x1, y1 x2, y2
(18,18) (18,23)
\(\mathsf{ m = \frac{23-18}{18-18} }\)
\(\mathsf{ m = \frac{5}{0} = undefined }\)

(-2,-2) (4,-5)

x1, y1 x2, y2
(-2,-2) (4,-5)
\(\mathsf{ m = \frac{-5-(-2)}{4-(-2)} }\)
\(\mathsf{ m = \frac{-3}{6} = -\frac{1}{2} }\)

(21,14) (24,7)

x1, y1 x2, y2
(21,14) (24,7)
\(\mathsf{ m = \frac{7-14}{24-21} }\)
\(\mathsf{ m = -\frac{7}{3} }\)

(-5,5) (-2,3)

x1, y1 x2, y2
(-5,5) (-2,3)
\(\mathsf{ m = \frac{3-5}{-2-(-5)} }\)
\(\mathsf{ m = -\frac{2}{3} }\)

(0,0) (4,4)

x1, y1 x2, y2
(0,0) (4,4)
\(\mathsf{ m = \frac{4-0}{4-0} }\)
\(\mathsf{ m = \frac{4}{4} = 1 }\)

(19,-5) (25,-5)

x1, y1 x2, y2
(19,-5) (25,-5)
\(\mathsf{ m = \frac{-5-(-5)}{25-19} }\)
\(\mathsf{ m = \frac{0}{6} = 0 }\)