Loading...

Can you find the inverse of these functions?

It's time to practice! For each function, find its inverse.

Practice 1

Practice 2

Practice 3


Find the inverse of f(x) = 7x2 − 16.

f(x) = 7x2 − 16
y = 7x2 − 16
x = 7y2 − 16
7y2 = x + 16
y2 = \(\small\mathsf{ \frac{x+16}{7} }\)
\(\small\mathsf{ y^{2} }\) = \(\small\mathsf{ \pm \sqrt{\frac{x+16}{7}} }\)
y = \(\small\mathsf{ \pm \sqrt{\frac{x+16}{7}} }\)

Since this is an even root, we must find out what value of x will make \(\small\mathsf{ \frac{x+16}{7} }\) greater than zero so the answer is a real number.

\(\small\mathsf{ \frac{x+16}{7} }\) > 0 (Multiply both sides by 7)
x + 16 > 0
x > -16
f-1(x) = \(\small\mathsf{ \pm \sqrt{\frac{x+16}{7}} }\) when x > -16

Find the inverse of f(x) = x3 + 23.

f(x) = x3 + 23
y = x3 + 23
x = y3 + 23
y3 = x − 23
\(\small\mathsf{ \sqrt[3]{y^{3}} }\) = \(\small\mathsf{ \sqrt[3]{x-23} }\)
y = \(\small\mathsf{ \sqrt[3]{x-23} }\)
f-1(x) = \(\small\mathsf{ \sqrt[3]{x-23} }\)

Find the inverse of f(x) = -x4 + 18.

f(x) = -x4 + 18
y = -x4 + 18
x = -y4 + 18
y4 = -x + 18
\(\small\mathsf{ \sqrt[4]{y^{4}} }\) = \(\small\mathsf{ \pm \sqrt[4]{-x+18} }\)
y = \(\small\mathsf{ \pm \sqrt[4]{-x+18} }\)

The fourth root is an even number so (-x + 8) must be greater than zero.

-x + 18 > 0
-x > -18

(Divide both sides by -1. This flips the > to <.)

x < 18

f-1(x) = \(\small\mathsf{ \pm \sqrt[4]{-x+18} }\) when x < 18