Loading...

Let's go through one more example of finding the inverse of a polynomial function.

Find the inverse of f(x) = x\(\small\mathsf{ ^3 }\) + 3, then click the reveal answer button below.

First, rewrite f(x) to y.
y = x\(\small\mathsf{ ^3 }\) + 3

Next, interchange the y and x variables.
x = y\(\small\mathsf{ ^3 }\) + 3

Next, solve for y.

x - 3 = y\(\small\mathsf{ ^3 }\)
y = \(\small\mathsf{ \sqrt[3]{x - 3} }\)

The inverse function is f\(\small\mathsf{ ^{-1} }\)(x) = \(\small\mathsf{ \sqrt[3]{x - 3} }\).